The temporal window of individuation limits visual capacity
نویسندگان
چکیده
One of the main tasks of vision is to individuate and recognize specific objects. Unlike the detection of basic features, object individuation is strictly limited in capacity. Previous studies of capacity, in terms of subitizing ranges or visual working memory, have emphasized spatial limits in the number of objects that can be apprehended simultaneously. Here, we present psychophysical and electrophysiological evidence that capacity limits depend instead on time. Contrary to what is commonly assumed, subitizing, the reading-out a small set of individual objects, is not an instantaneous process. Instead, individuation capacity increases in steps within the lifetime of visual persistence of the stimulus, suggesting that visual capacity limitations arise as a result of the narrow window of feedforward processing. We characterize this temporal window as coordinating individuation and integration of sensory information over a brief interval of around 100 ms. Neural signatures of integration windows are revealed in reset alpha oscillations shortly after stimulus onset within generators in parietal areas. Our findings suggest that short-lived alpha phase synchronization (≈1 cycle) is key for individuation and integration of visual transients on rapid time scales (<100 ms). Within this time frame intermediate-level vision provides an equilibrium between the competing needs to individuate invariant objects, integrate information about those objects over time, and remain sensitive to dynamic changes in sensory input. We discuss theoretical and practical implications of temporal windows in visual processing, how they create a fundamental capacity limit, and their role in constraining the real-time dynamics of visual processing.
منابع مشابه
Temporal buffering and visual capacity: The time course of object formation underlies capacity limits in visual cognition
Capacity limits are a hallmark of visual cognition. The upper boundary of our ability to individuate and remember objects is well known but-despite its central role in visual information processing-not well understood. Here, we investigated the role of temporal limits in the perceptual processes of forming "object files." Specifically, we examined the two fundamental mechanisms of object file f...
متن کاملThe neural basis of temporal individuation and its capacity limits in the human brain.
Individuation refers to individuals' use of spatial and temporal properties to register an object as a distinct perceptual event relative to other stimuli. Although behavioral studies have examined both spatial and temporal individuation, neuroimaging investigations of individuation have been restricted to the spatial domain and at relatively late stages of information processing. In this study...
متن کاملTemporal Processing in the Visual System
Encoding time is one of the most important features of the mammalian brain. The visual system, comprising almost half of the brain is of no exception. Time processing enables us to make goal-directed behavior in the optimum “time window” and launch a ballistic eye movement, reach/grasp an object or direct our processing resources (attention) from one point of interest to another. In addition, e...
متن کاملTemporal limits of long-range phase discrimination across the visual field
When two flickering sources are far enough apart to avoid low-level motion signals, phase judgment relies on the temporal individuation of the light and dark phases of each source. The highest rate at which the individuation can be maintained has been referred to as Gestalt flicker fusion [Van de Grind, W. A., Grüsser, O. -J., & Lunkenheimer, H. U. (1973). Temporal transfer properties of the af...
متن کاملThe Temporal Evolution of Electromagnetic Markers Sensitive to the Capacity Limits of Visual Short-Term Memory
An electroencephalographic (EEG) marker of the limited contents of human visual short-term memory (VSTM) has previously been described. Termed contralateral delay activity, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoenceph...
متن کامل